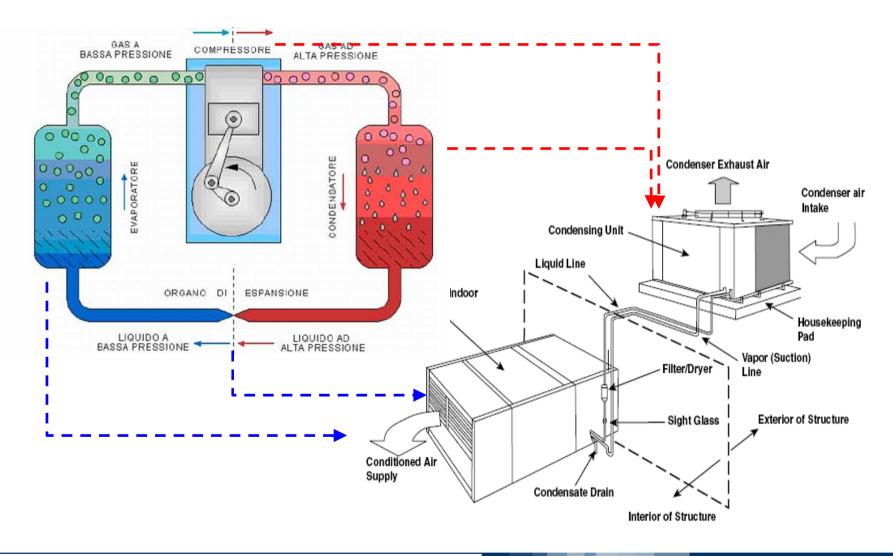
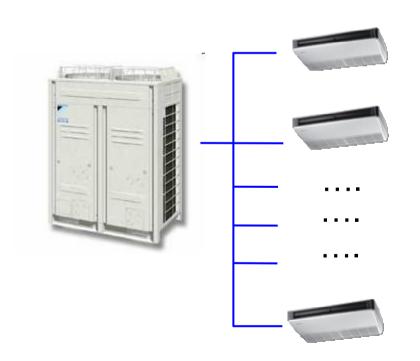

Prof. Livio Mazzarella – Dipartimento di Energia

Classificazione

Le diverse tipologie di impianti di condizionamento dell'aria (classificate in base al "fluido vettore")

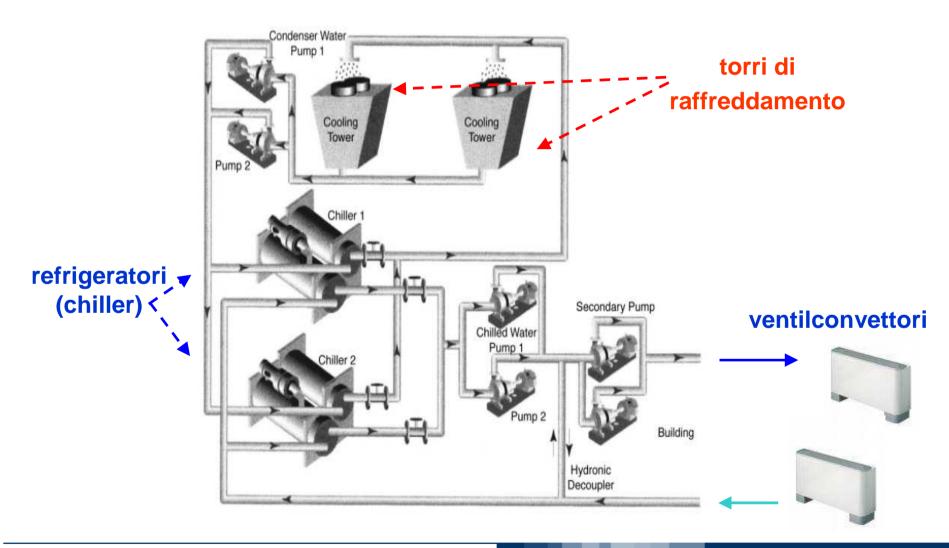

- ✓ Espansione diretta (es. R-410 A)
- ✓ Sistemi ad acqua refrigerata
- ✓ Sistemi misti aria-acqua
- ✓ Sistemi tutt'aria

Impianti di condizionamento: esempi


Il sistema a espansione diretta (es. split, multi-split)

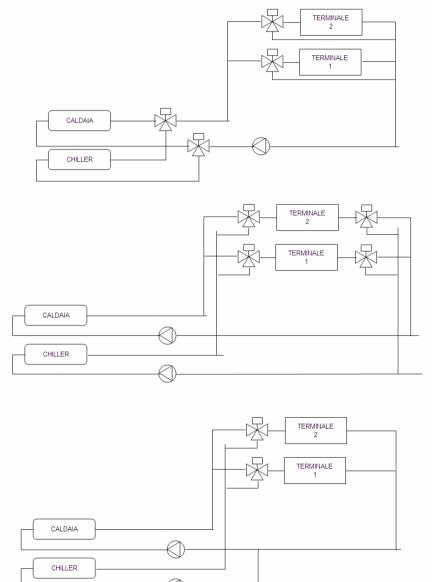
Classificazione sistemi ad espansione diretta

- Mono-split (per singola unità interna) e multi-split (2-3-4-... unità esterne)
- Package e Rooftop (sistemi trattamento aria compatti e canalizzabili)
- Grandi impianti VRV (fino a 64 unità interne)



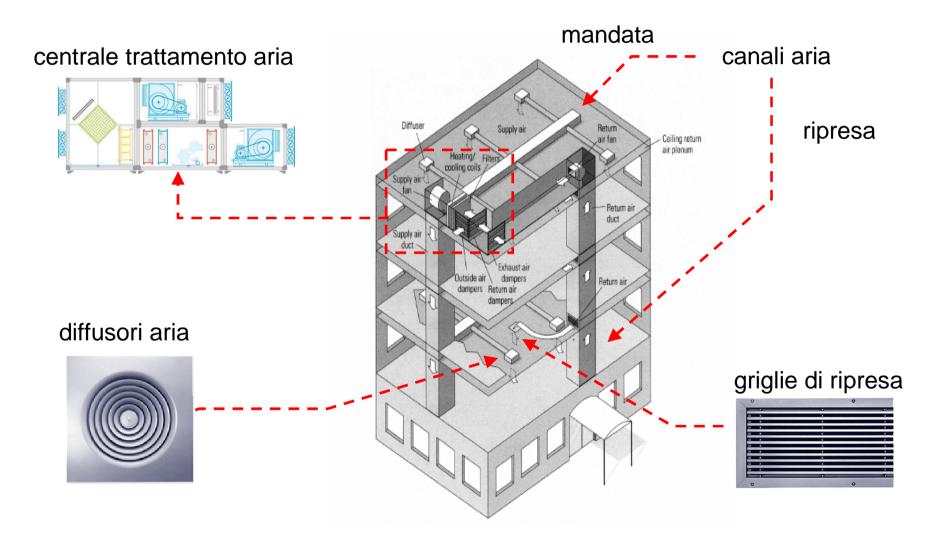
- Possibilità di espansione (sia per le unità interne che per quelle esterne)
- Elevata efficienza
- Possibilità di riscaldare e raffrescare simultaneamente (con recupero!)
- Utilizzabile per esercizi commerciali, uffici, hotel (fino a 50 m di altezza)
- Dotati di sistema di supervisione e controllo centralizzato

Impianti di condizionamento: esempi

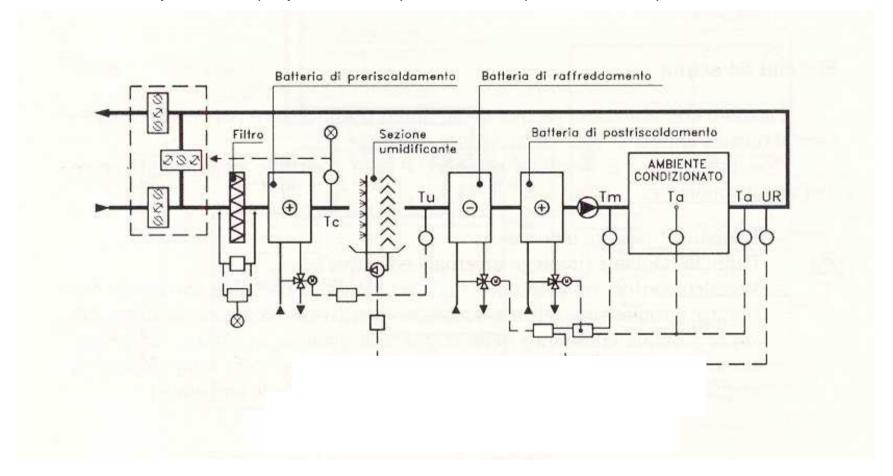


Sistema ad acqua refrigerata

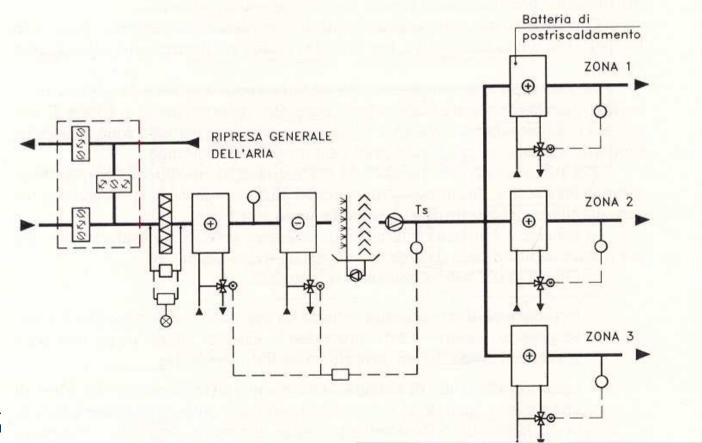
Classificazione sistemi ad acqua


- Due tubi
 - ✓ Caldo o freddo
 - ✓ Minor costo / ingombro
- Quattro tubi
 - ✓ Caldo <u>e</u> freddo
 - Maggior costo / ingombro
- Tre tubi
 - ✓ Caldo <u>e</u> freddo
 - ✓ Tubo di ritorno comune
 - ✓ Alte differenze di temp.

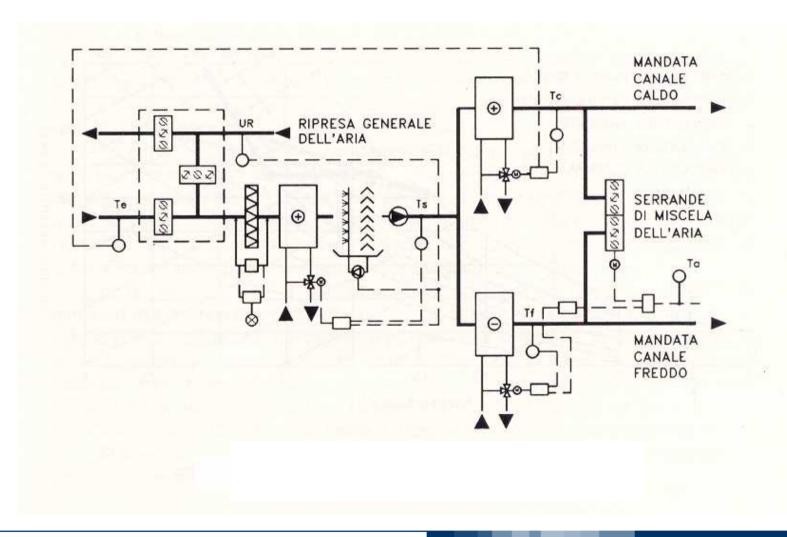
Impianti di condizionamento: esempi


■ Sistema aria primaria (2 vol/h) / tutt'aria (6 – 8 vol/h)

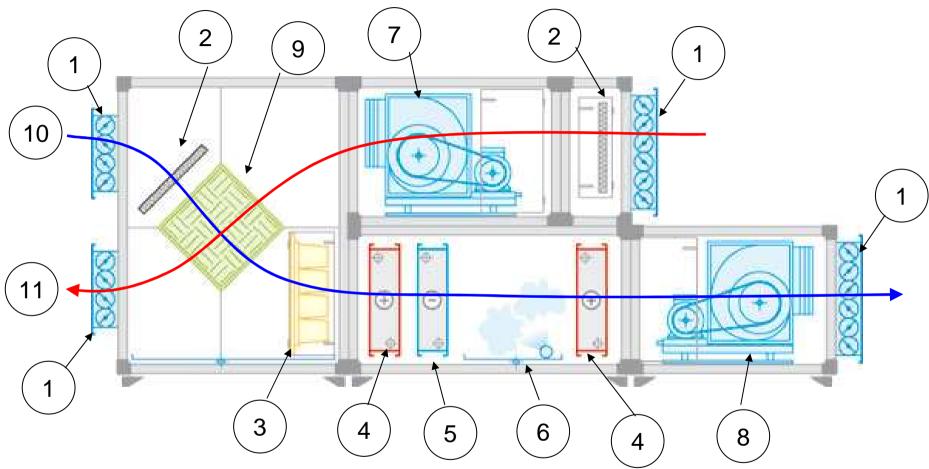
Classificazione sistemi a tutt'aria


- Monocondotto
 - Regolazione temperatura e umidità
 - ✓ Aria primaria (impianti misti) e tutt'aria (con ricircolo)

Classificazione sistemi a tutt'aria


- Monocondotto con post-riscaldamento di zona
 - ✓ Tutt'aria
 - ✓ Se misto aria / acqua
 - ✓ a 2 tubi, batteria comune di post-riscaldamento (es. Ti = 15 20 °C)
 - ✓ a 3 o 4 tubi, no post-riscaldamento (es. Ti=15 °C)

Classificazione sistemi a tutt'aria



Doppio condotto

Unità trattamento aria a 3 batterie con recupero del calore e umidificatore

- 1. serranda
- 2. pre-filtro
- 3. filtro a tasche
- 4. batt. riscaldamento
- 5. batt. raffreddamento
- 6. umidificatore
- 7. ventil. ritorno
- 8. ventil. mandata
- 9. scambiatore flussi X
- 10. ingresso aria esterna
- 11. espulsione

Il sistema di emissione (terminali)

1.bocchette

- limite sulla velocità dell'aria 2 6 m/s
- limite sul ∆T lato aria pari a 11 K
- posizione ad almeno 2 m di altezza
- adeguate per portate d'aria di 3 6 l/s,m²

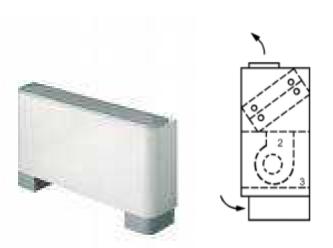
2. diffusori a soffitto

- limite sul AT lato aria tra 10 e 20 K
- portate d'aria da 5 a 30 l/s,m2
- limit sulla velocità terminale dell'aria 0.25 m/s
- il volume d'aria trattato dal terminale é variabile con la distanza tra terminali e l'altezza del locale

Il sistema di emissione (terminali)

- 3. terminali a dislocamento
 - ΔT aria limitato a 3-5 K
 - velocità dell'aria pari a 0.5 m/s
 - portata aria pari a 5 l/s,m²
 - solo per raffrescamento
 - bassi carichi estivi (25 W/m²)
- 4. diffusori a induzione alimentati ad aria primaria e acqua refrigerata
 - aria primaria ad alta velocità trascina aria presente nella stanza
 - alimentato ad acqua fredda, la capacità di scambio migliora perché si somma il flusso primario a quello secondario (anche più del doppio)

Il sistema di emissione (terminali)



5. ventilconvettori

- temperatura acqua 7 12 ℃
- capacità di raffrescamento 0.5 10 kW
- portata aria 180 200 m³/h / kWc
- potenza ventilatore = 2 5% potenza frigorifera
- limiti: rumore (25 35 dB)
- regolazione della velocità (3 vel.)
- rimozione manuale della condensa

6. travi fredde

- ΔT aria locale acqua circa 10 K
- T acqua superiore alla temperatura di rugiada (no condensazione) 15 – 18 ℃
- capacità di raffrescamento 60 W/m2
- Idonee per essere impiegate negli uffici (silenziosità, economicità)

Vantaggi e svantaggi dei sistemi decentralizzati Vs centralizzati

- I sistemi decentralizzati (es. split) hanno, rispetto ai sistemi centralizzati (es. impianti ad acqua e tutt'aria) i seguenti vantaggi:
 - ✓ basso costo iniziale
 - ✓ facili da installare (tubi per il trasporto del refrigerante pre-isolati e flessibili)
 - √ versatili, possono funzionare anche come pompa di calore
 - ✓ controllati facilmente dall'utente

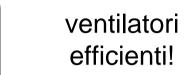
Vantaggi e svantaggi dei sistemi decentralizzati Vs centralizzati

- I sistemi decentralizzati comportano però anche importanti svantaggi:
 - ✓ vita utile breve (meno di 10 anni)
 - ✓ non consentono un buon controllo della qualità dell'aria (scarso filtraggio, limitato controllo dell'umidità)
 - ✓ la potenza installata complessivamente è superiore
 - ✓ consumi elettrici superiori (il "free cooling" non è quasi mai possibile)
 - ✓ impatto visivo non sempre accettabile (unità esterne)

Sistemi centralizzati

Capacità di raffrescamento specifica per alcuni sistemi centralizzati

Capacità di raffrescamento [W/m²]		Altezza locale [m] e ΔT=T _{locale} -T _{immissione} [K]				
system type	ricambi d'aria [1/h]	2.4 m 6 K	2.7 m 8 K	3.0 m 10 K	3.5 m 12 K	4.0 m 15 K
Sistemi tutt'aria	3	15	20	30	40	60
	4	20	30	40	55	80
	5	25	35	50	70	100
	6	30	45	60	85	120
Acqua con travi fredde	-	60	60	60	60	60
Acqua con pannelli radianti	-	20	20	20	20	20


Note:

- ✓ ∆T e altezza del locale sono correlati in modo da evitare situazioni di fastidio per gli occupanti
- ✓ si sono considerati i seguenti dati di occupazione e richiesta d'aria di rinnovo: 0.15 p/m2 e 40 m3/h,p

perdite di carico tipicamente riscontrate negli impianti ad aria

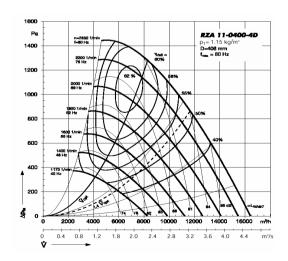
pre-filtro	40-80 Pa
 filtro ad alta efficienza 	80-150 Pa
 batteria fredda 1 rango 	20-50 Pa
 batteria fredda 4 ranghi 	40-100 Pa
 batteria fredda 8 ranghi 	80-150 Pa
serranda	10-30 Pa
 umidificatore spray 	10-50 Pa
 umidificatore a pacco 	80-150 Pa

pulizia regolare filtri e canali!

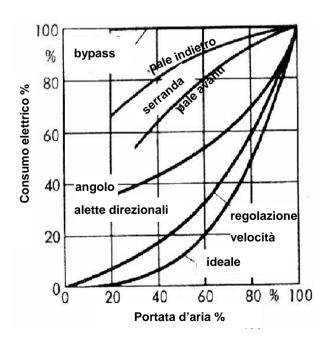
- perdite di carico nei canali (es. 300 Pa)
 - velocità dell'aria 4 6 m/s
 - perdite di carico distribuite (canale rettilineo) e concentrate (es. curve, restringimenti, allargamenti)

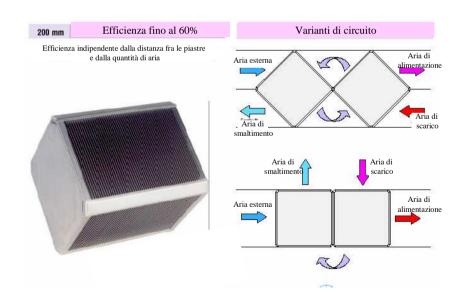
Considerazioni energetiche

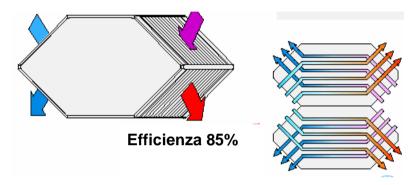
- I volumi di ricambio sono normati (UNI 10339 UNI 13779) al fine di garantire il comfort necessario
 - √ volumi fissi in base alla destinazione d'uso, affollamento e m²
 - ✓ volumi variabili in funzione della necessità (affollamento, inquinanti)

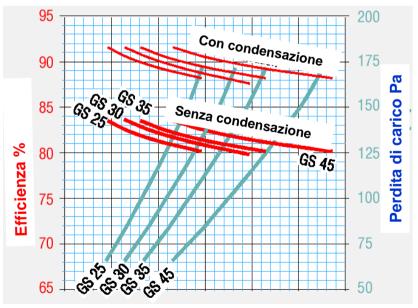

UNI 10339

Portata di aria esterna	litri/s per persona	litri/s per m² d superficie
Abitazioni civili: soggiorno, camere	11	
Alberghi: hall, camere	11	
Musei, Biblioteche: de posito libri		1.5
Bar, il stora nti, sale da ballo, cucin e		16.5
Bar	11	
Pasticcerie	6	
Piscine, saune		2.5

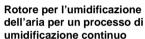

Categoria	Descrizione
IDA – C 1	Nessun controllo L'impianto funziona costantemente
IDA – C 2	Controllo manuale L'impianto può essere comandato da un controllo interno all'ambiente
IDA – C 3	Controllo a tempo L'impianto funziona in accordo a tempi programmati
IDA – C4	Controllo di presenza L'impianto funziona asservito a sensori di presenza o in parallelo all'impianto di illuminazione
IDA – C 5	Controllo secondo necessità (conta-persone) L'impianto funziona proporzionalmente al numero di persone presenti
IDA – C 6	Controllo secondo necessità (sensori di gas) L'impianto funziona in modo da mantenere il livello di determinati nquinanti gassosi al di sotto dei livelli consentiti (ad es. CO ₂ , SOV – sostanze organiche volatili. La scelta dei sensori deve essere dipendente dal tipo di attività esercitata nell'ambiente (cioè dalla tipologia di inquinante prevalente)

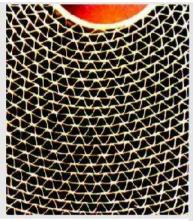

- ventilatori con controllo della portata d'aria
 - ✓ la legge ideale di variazione dei consumi elettrici (P_{el}) con la portata d'aria (Q) è cubica (P_{el} = k Q ³)
 - ✓ esistono diverse modalità per il controllo della portata (ma i benefici in termini di riduzione dei consumi elettrici non sono gli stessi!)
 - bypass
 - serrande di regolazione
 - angolo alette direzionali
 - regolazione velocità (inverter)

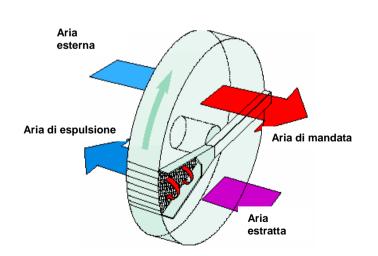


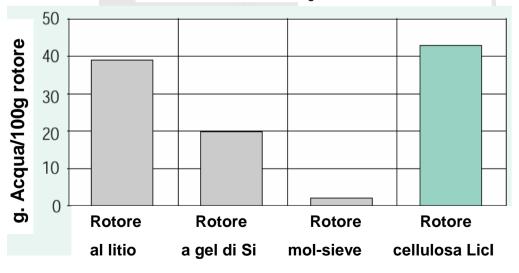


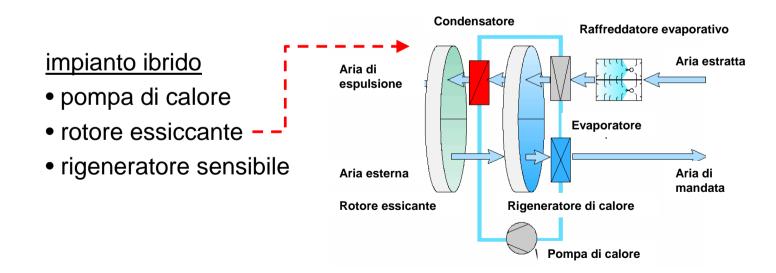
- Recupero di calore (freddo)
 - ✓ Recupero di calore sensibile
 - ✓ Efficienza termica:
 - $\checkmark \epsilon_{th} = DT/DTmax$
 - $\checkmark~\epsilon_{th}$ 40% 90%

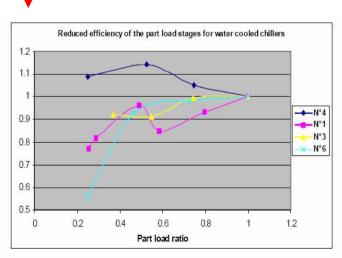


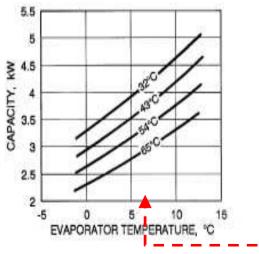


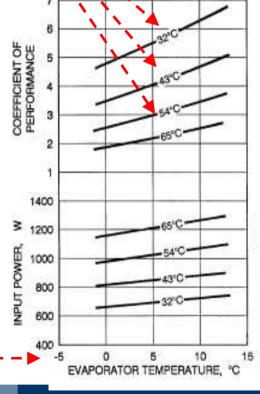

- Rigeneratore entalpico
 - ✓ Recupero di calore sensibile
 - ✓ Recupero di umidità
 - Usato per il riscaldamento (umidifica l'aria esterna in inverno)



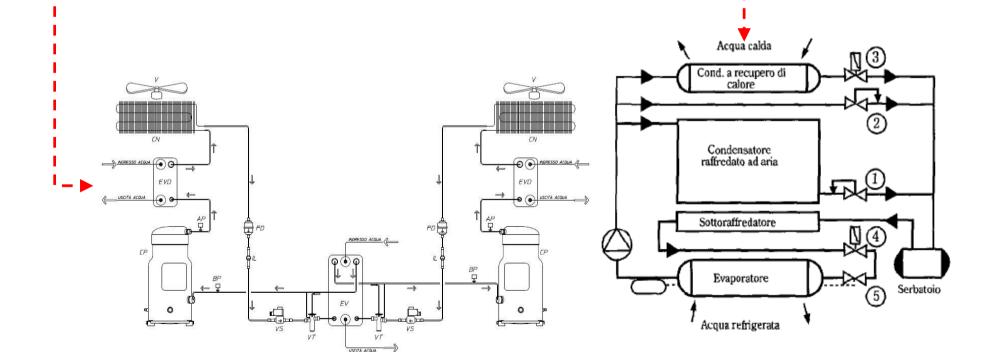

L'umidità viene rimossa dall'aria per adssorbimento utilizzando gel di silice LiCl


- Rotore essiccante (desiccant rotors)
 - Analogo al rigeneratore entalpico, ma a bassa velocità di rotazione 20 r.p.h.)
 - Usato per la deumidificazione
 - ✓ Necessita di calore per la rigenerazione del rotore
 - ✓ Indicato dove il carico latente è molto elevato




Prestazioni dei refrigeratori EER = potenza frigorifera / potenza elettrica

- Le prestazioni (potenza frigorifera, EER) dipendono da
 - funzionamento a carico parziale
 - √ temperatura di condensazione (acqua di raffreddamento)
 - ✓ temperatura di evaporazione (acqua refrigerata)


- Impianti ad acqua e temperatura di mandata dell'acqua
 - ✓ il sistema di diffusione scelto ha un'impatto sul comfort (es. sistemi radianti) e anche sulla temperatura di mandata
 - ✓ alta temperatura di mandata significa migliori rendimenti degli impianti di produzione della potenza frigorifera
 - √ a) refrigeratori d'acqua a compressione
 - ✓ b) refrigeratori d'acqua ad assorbimento in combinazione con calore da fonte rinnovabile (es. energia solare termica)

Considerazioni energetiche Refrigeratori

- Recupero del calore di condensazione dal chiller (es. per ACS)
 - recupero parziale (desurriscaldatore)
 - ✓ recupero totale (condensatore ausilario)

